Show the code
Author RiskOfBias
1 Call et al. high
2 Cavanagh et al. low
3 DanitzOrsillo high
4 de Vibe et al. low
5 Frazier et al. low
6 Frogeli et al. low
October 31, 2024
November 12, 2024
亚组分析只是元回归的一个特例
先验定义
在亚组分析中,我们假设荟萃分析中的研究不是来自一个总体人群。 相反,我们假设它们属于不同的子组,每个子组都有自己的真实整体效应。 目的是拒绝亚组之间效应大小没有差异的零假设。
The Fixed-Effects (Plural) Model
固定效应(复数)模型包含随机效应(子组内)和固定效应(因为子组被假设为固定的),因此在文献中也称为混合效应模型。
添加“复数”一词是因为我们必须将其与标准固定效应模型区分开来。固定效应(复数)模型可以看作是一种混合生物,包括固定效应模型和随机效应模型的特征。与随机效应模型一样,我们假设存在多个真实效应大小,因为我们的数据中有子组。
子组分析的计算由两部分组成:首先,我们将每个子组中的效应合并。随后,使用统计测试来比较亚组的效果
Pooling the Effect in Subgroups
a pooled effect \(\hat μ_g\) for each subgroup \(g\) .
share a common estimate of the between-study heterogeneity \(\tau^2\) that was pooled across subgroups
Comparing the Subgroup Effects using a statistical test
子组分析:注意 事项
亚组分析纯粹是观察性的,因此,我们应该始终牢记,效果差异也可能是由混杂变量引起的
在亚组分析中使用汇总研究信息是一个坏主意,因为这可能会引入系统偏差。
Author RiskOfBias
1 Call et al. high
2 Cavanagh et al. low
3 DanitzOrsillo high
4 de Vibe et al. low
5 Frazier et al. low
6 Frogeli et al. low
update(m.gen,
subgroup = RiskOfBias,
tau.common = FALSE)
Review: Third Wave Psychotherapies
Number of studies: k = 18
SMD 95%-CI t p-value
Random effects model (HK) 0.5771 [ 0.3782; 0.7760] 6.12 < 0.0001
Prediction interval [-0.0542; 1.2084]
Quantifying heterogeneity (with 95%-CIs):
tau^2 = 0.0820 [0.0295; 0.3533]; tau = 0.2863 [0.1717; 0.5944]
I^2 = 62.6% [37.9%; 77.5%]; H = 1.64 [1.27; 2.11]
Test of heterogeneity:
Q d.f. p-value
45.50 17 0.0002
Results for subgroups (random effects model (HK)):
k SMD 95%-CI tau^2 tau Q I^2
RiskOfBias = high 7 0.8126 [0.2835; 1.3417] 0.2423 0.4922 25.89 76.8%
RiskOfBias = low 11 0.4300 [0.2770; 0.5830] 0.0099 0.0997 13.42 25.5%
Test for subgroup differences (random effects model (HK)):
Q d.f. p-value
Between groups 2.84 1 0.0917
Details of meta-analysis methods:
- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Hartung-Knapp adjustment for random effects model (df = 17)
- Prediction interval based on t-distribution (df = 17)
update(m.gen, subgroup = RiskOfBias, tau.common = TRUE)
Review: Third Wave Psychotherapies
Number of studies: k = 18
SMD 95%-CI t p-value
Random effects model (HK) 0.5771 [ 0.3782; 0.7760] 6.12 < 0.0001
Prediction interval [-0.0542; 1.2084]
Quantifying heterogeneity (with 95%-CIs):
tau^2 = 0.0820 [0.0295; 0.3533]; tau = 0.2863 [0.1717; 0.5944]
I^2 = 62.6% [37.9%; 77.5%]; H = 1.64 [1.27; 2.11]
Quantifying residual heterogeneity (with 95%-CIs):
tau^2 = 0.0691 [0.0208; 0.3268]; tau = 0.2630 [0.1441; 0.5717]
I^2 = 59.3% [30.6%; 76.1%]; H = 1.57 [1.20; 2.05]
Test of heterogeneity:
Q d.f. p-value
45.50 17 0.0002
Results for subgroups (random effects model (HK)):
k SMD 95%-CI tau^2 tau Q I^2
RiskOfBias = high 7 0.7691 [0.2533; 1.2848] 0.0691 0.2630 25.89 76.8%
RiskOfBias = low 11 0.4698 [0.3015; 0.6382] 0.0691 0.2630 13.42 25.5%
Test for subgroup differences (random effects model (HK)):
Q d.f. p-value
Between groups 1.79 1 0.1814
Within groups 39.31 16 0.0010
Details of meta-analysis methods:
- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
(assuming common tau^2 in subgroups)
- Q-Profile method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Hartung-Knapp adjustment for random effects model (df = 17)
- Prediction interval based on t-distribution (df = 17)