亚组分析

meta
Published

October 31, 2024

Modified

November 12, 2024

亚组分析只是元回归的一个特例

先验定义

在亚组分析中,我们假设荟萃分析中的研究不是来自一个总体人群。 相反,我们假设它们属于不同的子组,每个子组都有自己的真实整体效应。 目的是拒绝亚组之间效应大小没有差异的零假设。

固定效应(复数)模型

The Fixed-Effects (Plural) Model

固定效应(复数)模型包含随机效应(子组内)和固定效应(因为子组被假设为固定的),因此在文献中也称为混合效应模型。

添加“复数”一词是因为我们必须将其与标准固定效应模型区分开来。固定效应(复数)模型可以看作是一种混合生物,包括固定效应模型和随机效应模型的特征。与随机效应模型一样,我们假设存在多个真实效应大小,因为我们的数据中有子组。

子组分析的计算由两部分组成:首先,我们将每个子组中的效应合并。随后,使用统计测试来比较亚组的效果

Pooling the Effect in Subgroups

  • a pooled effect \(\hat μ_g\) for each subgroup \(g\) .

  • share a common estimate of the between-study heterogeneity \(\tau^2\) that was pooled across subgroups

Comparing the Subgroup Effects using a statistical test

  • Q test :自由度为G-1的卡方分布
Caution

子组分析:注意 事项

  1. 子组分析取决于统计功效,因此它通常 当研究数量很少时进行一次研究是没有意义的 (即K< 10)。
  1. 如果未发现子组之间的效应大小存在差异, 这并不意味着子组 产生等效的结果。
  1. 亚组分析纯粹是观察性的,因此,我们应该始终牢记,效果差异也可能是由混杂变量引起的

  2. 在亚组分析中使用汇总研究信息是一个坏主意,因为这可能会引入系统偏差。

R

Show the code
# Show first entries of study name and 'RiskOfBias' column
head(dmetar::ThirdWave[,c("Author", "RiskOfBias")])
           Author RiskOfBias
1     Call et al.       high
2 Cavanagh et al.        low
3   DanitzOrsillo       high
4  de Vibe et al.        low
5  Frazier et al.        low
6  Frogeli et al.        low
Show the code
library(meta)
m.gen <- metagen(TE = TE,
                 seTE = seTE,
                 studlab = Author,
                 data = dmetar::ThirdWave,
                 sm = "SMD",
                 fixed = FALSE,
                 random = TRUE,
                 method.tau = "REML",
                 method.random.ci = "HK",
                 prediction = TRUE,
                 title = "Third Wave Psychotherapies")
Show the code
update(m.gen, 
       subgroup = RiskOfBias, 
       tau.common = FALSE)
Review:     Third Wave Psychotherapies

Number of studies: k = 18

                             SMD            95%-CI    t  p-value
Random effects model (HK) 0.5771 [ 0.3782; 0.7760] 6.12 < 0.0001
Prediction interval              [-0.0542; 1.2084]              

Quantifying heterogeneity (with 95%-CIs):
 tau^2 = 0.0820 [0.0295; 0.3533]; tau = 0.2863 [0.1717; 0.5944]
 I^2 = 62.6% [37.9%; 77.5%]; H = 1.64 [1.27; 2.11]

Test of heterogeneity:
     Q d.f. p-value
 45.50   17  0.0002

Results for subgroups (random effects model (HK)):
                    k    SMD           95%-CI  tau^2    tau     Q   I^2
RiskOfBias = high   7 0.8126 [0.2835; 1.3417] 0.2423 0.4922 25.89 76.8%
RiskOfBias = low   11 0.4300 [0.2770; 0.5830] 0.0099 0.0997 13.42 25.5%

Test for subgroup differences (random effects model (HK)):
                  Q d.f. p-value
Between groups 2.84    1  0.0917

Details of meta-analysis methods:
- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
- Q-Profile method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Hartung-Knapp adjustment for random effects model (df = 17)
- Prediction interval based on t-distribution (df = 17)
Show the code
update(m.gen, subgroup = RiskOfBias, tau.common = TRUE)
Review:     Third Wave Psychotherapies

Number of studies: k = 18

                             SMD            95%-CI    t  p-value
Random effects model (HK) 0.5771 [ 0.3782; 0.7760] 6.12 < 0.0001
Prediction interval              [-0.0542; 1.2084]              

Quantifying heterogeneity (with 95%-CIs):
 tau^2 = 0.0820 [0.0295; 0.3533]; tau = 0.2863 [0.1717; 0.5944]
 I^2 = 62.6% [37.9%; 77.5%]; H = 1.64 [1.27; 2.11]

Quantifying residual heterogeneity (with 95%-CIs):
 tau^2 = 0.0691 [0.0208; 0.3268]; tau = 0.2630 [0.1441; 0.5717]
 I^2 = 59.3% [30.6%; 76.1%]; H = 1.57 [1.20; 2.05]

Test of heterogeneity:
     Q d.f. p-value
 45.50   17  0.0002

Results for subgroups (random effects model (HK)):
                    k    SMD           95%-CI  tau^2    tau     Q   I^2
RiskOfBias = high   7 0.7691 [0.2533; 1.2848] 0.0691 0.2630 25.89 76.8%
RiskOfBias = low   11 0.4698 [0.3015; 0.6382] 0.0691 0.2630 13.42 25.5%

Test for subgroup differences (random effects model (HK)):
                   Q d.f. p-value
Between groups  1.79    1  0.1814
Within groups  39.31   16  0.0010

Details of meta-analysis methods:
- Inverse variance method
- Restricted maximum-likelihood estimator for tau^2
  (assuming common tau^2 in subgroups)
- Q-Profile method for confidence interval of tau^2 and tau
- Calculation of I^2 based on Q
- Hartung-Knapp adjustment for random effects model (df = 17)
- Prediction interval based on t-distribution (df = 17)