5  敏感性分析

Show the code
require(rbounds)
data(lalonde, package='Matching')

Y  <- lalonde$re78   #the outcome of interest
Tr <- lalonde$treat #the treatment of interest
attach(lalonde)
# The covariates we want to match on
X = cbind(age, educ, black, hisp, married, nodegr, u74, u75, re75, re74)
# The covariates we want to obtain balance on
BalanceMat <- cbind(age, educ, black, hisp, married, nodegr, u74, u75, re75, re74,
                    I(re74*re75))
detach(lalonde)

set.seed(123)
library(Matching)
gen1 <- GenMatch(Tr=Tr, X=X, BalanceMat=BalanceMat, pop.size=50,
                  data.type.int=FALSE, print=0, replace=FALSE)
mgen1 <- Match(Y=Y, Tr=Tr, X=X, Weight.matrix=gen1, replace=FALSE)
summary(mgen1)
#> 
#> Estimate...  1659.1 
#> SE.........  716.65 
#> T-stat.....  2.315 
#> p.val......  0.02061 
#> 
#> Original number of observations..............  445 
#> Original number of treated obs...............  185 
#> Matched number of observations...............  185 
#> Matched number of observations  (unweighted).  185
Show the code
rbounds::psens(x = Y[mgen1$index.treated],
      y =Y[mgen1$index.contro],
      Gamma = 1.5, 
      GammaInc = .1)
#> 
#>  Rosenbaum Sensitivity Test for Wilcoxon Signed Rank P-Value 
#>  
#> Unconfounded estimate ....  0.0121 
#> 
#>  Gamma Lower bound Upper bound
#>    1.0      0.0121      0.0121
#>    1.1      0.0026      0.0429
#>    1.2      0.0005      0.1087
#>    1.3      0.0001      0.2149
#>    1.4      0.0000      0.3521
#>    1.5      0.0000      0.5006
#> 
#>  Note: Gamma is Odds of Differential Assignment To
#>  Treatment Due to Unobserved Factors 
#> 
Show the code
rbounds::hlsens(x = Y[mgen1$index.treated],
       y = Y[mgen1$index.contro],
       Gamma = 1.5, 
       GammaInc = .1)
#> 
#>  Rosenbaum Sensitivity Test for Hodges-Lehmann Point Estimate 
#>  
#> Unconfounded estimate ....  1596 
#> 
#>  Gamma Lower bound Upper bound
#>    1.0  1596.00000      1596.0
#>    1.1  1028.10000      1753.6
#>    1.2   686.90000      2021.2
#>    1.3   411.30000      2340.5
#>    1.4   123.40000      2593.1
#>    1.5    -0.89996      2865.5
#> 
#>  Note: Gamma is Odds of Differential Assignment To
#>  Treatment Due to Unobserved Factors 
#>