5 亚组分析
亚组分析只是meta回归的一个特例
先验定义
在亚组分析中,我们假设荟萃分析中的研究不是来自一个总体人群。 相反,我们假设它们属于不同的子组,每个子组都有自己的真实整体效应。 目的是拒绝亚组之间效应大小没有差异的零假设。
5.1 固定效应(复数)模型
The Fixed-Effects (Plural) Model
固定效应(复数)模型包含随机效应(子组内)和固定效应(因为子组被假设为固定的),因此在文献中也称为混合效应模型。
添加“复数”一词是因为我们必须将其与标准固定效应模型区分开来。固定效应(复数)模型可以看作是一种混合生物,包括固定效应模型和随机效应模型的特征。与随机效应模型一样,我们假设存在多个真实效应大小,因为我们的数据中有子组。
子组分析的计算由两部分组成:首先,我们将每个子组中的效应合并。随后,使用统计测试来比较亚组的效果
Pooling the Effect in Subgroups
a pooled effect \(\hat μ_g\) for each subgroup \(g\) .
share a common estimate of the between-study heterogeneity \(\tau^2\) that was pooled across subgroups
Comparing the Subgroup Effects using a statistical test
- Q test :自由度为G-1的卡方分布
Caution
子组分析:注意 事项
- 子组分析取决于统计功效,因此它通常 当研究数量很少时进行一次研究是没有意义的 (即K< 10)。
- 如果未发现子组之间的效应大小存在差异, 这并不意味着子组 产生等效的结果。
- 亚组分析纯粹是观察性的,因此,我们应该始终牢记,效果差异也可能是由混杂变量引起的
- 在亚组分析中使用汇总研究信息是一个坏主意,因为这可能会引入系统偏差。
5.2 R
Show the code
update(m.gen,
subgroup = RiskOfBias,
tau.common = FALSE)
#> Review: Third Wave Psychotherapies
#>
#> Number of studies: k = 18
#>
#> SMD 95%-CI t p-value
#> Random effects model (HK) 0.5771 [ 0.3782; 0.7760] 6.12 < 0.0001
#> Prediction interval [-0.0542; 1.2084]
#>
#> Quantifying heterogeneity (with 95%-CIs):
#> tau^2 = 0.0820 [0.0295; 0.3533]; tau = 0.2863 [0.1717; 0.5944]
#> I^2 = 62.6% [37.9%; 77.5%]; H = 1.64 [1.27; 2.11]
#>
#> Test of heterogeneity:
#> Q d.f. p-value
#> 45.50 17 0.0002
#>
#> Results for subgroups (random effects model (HK)):
#> k SMD 95%-CI tau^2 tau Q I^2
#> RiskOfBias = high 7 0.8126 [0.2835; 1.3417] 0.2423 0.4922 25.89 76.8%
#> RiskOfBias = low 11 0.4300 [0.2770; 0.5830] 0.0099 0.0997 13.42 25.5%
#>
#> Test for subgroup differences (random effects model (HK)):
#> Q d.f. p-value
#> Between groups 2.84 1 0.0917
#>
#> Details of meta-analysis methods:
#> - Inverse variance method
#> - Restricted maximum-likelihood estimator for tau^2
#> - Q-Profile method for confidence interval of tau^2 and tau
#> - Calculation of I^2 based on Q
#> - Hartung-Knapp adjustment for random effects model (df = 17)
#> - Prediction interval based on t-distribution (df = 17)Show the code
update(m.gen, subgroup = RiskOfBias, tau.common = TRUE)
#> Review: Third Wave Psychotherapies
#>
#> Number of studies: k = 18
#>
#> SMD 95%-CI t p-value
#> Random effects model (HK) 0.5771 [ 0.3782; 0.7760] 6.12 < 0.0001
#> Prediction interval [-0.0542; 1.2084]
#>
#> Quantifying heterogeneity (with 95%-CIs):
#> tau^2 = 0.0820 [0.0295; 0.3533]; tau = 0.2863 [0.1717; 0.5944]
#> I^2 = 62.6% [37.9%; 77.5%]; H = 1.64 [1.27; 2.11]
#>
#> Quantifying residual heterogeneity (with 95%-CIs):
#> tau^2 = 0.0691 [0.0208; 0.3268]; tau = 0.2630 [0.1441; 0.5717]
#> I^2 = 59.3% [30.6%; 76.1%]; H = 1.57 [1.20; 2.05]
#>
#> Test of heterogeneity:
#> Q d.f. p-value
#> 45.50 17 0.0002
#>
#> Results for subgroups (random effects model (HK)):
#> k SMD 95%-CI tau^2 tau Q I^2
#> RiskOfBias = high 7 0.7691 [0.2533; 1.2848] 0.0691 0.2630 25.89 76.8%
#> RiskOfBias = low 11 0.4698 [0.3015; 0.6382] 0.0691 0.2630 13.42 25.5%
#>
#> Test for subgroup differences (random effects model (HK)):
#> Q d.f. p-value
#> Between groups 1.79 1 0.1814
#> Within groups 39.31 16 0.0010
#>
#> Details of meta-analysis methods:
#> - Inverse variance method
#> - Restricted maximum-likelihood estimator for tau^2
#> (assuming common tau^2 in subgroups)
#> - Q-Profile method for confidence interval of tau^2 and tau
#> - Calculation of I^2 based on Q
#> - Hartung-Knapp adjustment for random effects model (df = 17)
#> - Prediction interval based on t-distribution (df = 17)